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Abstract

In the present work the application of the direct forcing method to the fractional step solution of the Navier–Stokes
equations is analyzed in details. The central topic of the study is the satisfaction of the boundary conditions in the presence
of immersed bodies. To this aim, simple two-dimensional problems with steady forcing and sharp-edged surfaces are
solved with a standard fractional step method. It is shown that the direct forcing scheme is not able to satisfy the impen-
etrability condition. This fact appears to be strictly related to the use of fractional step methods. A mathematically based
explanation is given, suggesting that improvements can be obtained with the iterative solution of the irrotational part of
the flow, when spectral methods are used and local modification of the discrete differential operators are difficult to be
implemented. The results are then verified in two-dimensional unsteady problems and three-dimensional flows with moving
smooth boundaries.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the last years, computational fluid dynamics has received a renewed impulse from the continuous
advancement of the numerical techniques. Among the other developments, it is worthy to be reminded the
refinement of the immersed-boundary methods (IB), which allow the simulation of flows with immersed bodies
on regular grids that are not conformal to the shape of the boundaries. The IB methods include a large variety
of numerical techniques (see Mittal and Iaccarino [1] and references therein for a review) that can be used in
conjunction with finite-differences, finite-volume and finite-element approaches.

In any case, the central point of the IB methods is the imposition of the boundary conditions at the surface
of immersed bodies. These conditions can be included into the system of continuous equations or, alterna-
tively, into the discrete one, giving the continuous and discrete forcing approaches, respectively [1]. The former
was introduced for the simulation of viscous flows and elastic immersed boundaries [2], and it is based on the
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Eulerian–Lagrangian description of the fluid and solid variables, respectively. The interpolation of the fluid
quantities gives the motion and the deformation of the bodies, from these the Lagrangian distribution of stres-
ses acting on them can be computed. On the opposite, these stresses are spread and transformed in the Eule-
rian force density, which is considered in the solution of the Navier–Stokes equation. The kernel function for
the Eulerian–Lagrangian transformation, the Dirac d function, is replaced numerically by different smoother
ones (see [2,3] for examples). This method, which appears well suited for flow with elastic boundaries, has been
subsequently modified and adapted for the presence of rigid bodies.

The discrete forcing approach can be further divided into two classes, characterized by the indirect or the
direct imposition of the boundary conditions. The first method is based on the determination of the forcing
terms from the fluid solution [4–6]. With the direct forcing method, the boundary conditions are imposed
directly at the IB, usually requiring the local modification of the computational stencil. Different approaches
have been developed to be used with finite-difference and finite-volume techniques ([1], and references
therein).

In the present work we discuss the application of the direct forcing method to the numerical solution of the
Navier–Stokes equation with mixed spectral-finite-differences methods. Several works have been devoted to
develop the direct forcing method in the finite-differences framework, they was mainly focused on the accuracy
of the solution close to the boundaries. Different schemes for the local interpolation of the fluid velocities have
been tested, linear (bi- and tri-linear) and/or quadratic interpolations are typically used [1].

One of the most interesting aspect is represented by the application of the direct forcing when a fractional
step method is used to solve the governing equations; this is a well-known two-steps method where the
momentum equation is advanced in time giving an intermediate non-solenoidal field, then the mass conserva-
tion is enforced solving a Poisson problem for the pressure or for an irrotational corrective field [7,8]. The
attractiveness of the direct forcing method stands in its easy implementation: during the temporal advance-
ment, the kinematical conditions are imposed at (near) the boundaries with different interpolating schemes,
avoiding the solution of additional equations for the forcing term. The intriguing point is represented by
the straightforward solution of the Poisson equation, without the imposition of specific conditions at the
boundaries [9].

Independently on the particular scheme adopted for the time advancement of the Navier–Stokes equation,
the velocity values at the boundaries are commonly enforced on the intermediate non-solenoidal field, instead
of on the divergence-free one that is obtained at each time step after the imposition of the mass conservation.
If this second step changes the velocity values at the immersed boundaries, the boundary conditions would be
violated. Since the irrotational step consists in the solution of a Poisson problem and additional conditions are
not imposed at the boundaries, there is no warranty about the correctness of the solution. This fact is inde-
pendent on the spatial discretization used and on the specific method employed to impose the kinematical con-
ditions. Such a crucial point was discussed by Fadlun et al. [9], which speculated that the correctness, in an
approximate sense, of the solution could be related to the linearization of the velocities close to the boundary,
that gives a negligible normal component of the pressure gradient, and, therefore, a negligible normal compo-
nent of the irrotational correction.

More recently, a mass source term was introduced in the pressure equation to satisfy the mass balance in
the computational cells cut by the walls [10], but such a method does not guarantee the satisfaction of the
adherence condition. Alternatively, a method based on the local modification of the discrete operators (gra-
dient and divergence) has been proposed, giving a consistent scheme for the irrotational part of the solution
[11]. In this work, it is not clear whether the same interpolation operator is used for both momentum and pres-
sure (irrotational part of the solution) equations or not, because the latter one can not satisfy the adherence,
but only the impenetrability condition.

The present work is focussed on the study of the boundary conditions when the direct forcing method is
used in the numerical solution of the equations that rule incompressible viscous flows. More precisely, the cen-
tral issue is the satisfaction of the impenetrability condition in correspondence of fixed and moving walls. In
order to drive the discussion far from specific numerical details (interpolating procedures, local accuracy, et

cetera) towards the basic problem of the consistency of the approach, simple two-dimensional problems with
rigid boundaries are studied. Afterwards, the analysis is extended to the three-dimensional flow inside an
expanding cavity.
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2. Mathematical formulation and numerical method

Some problems involving the incompressible motion of a viscous fluid are considered. The governing equa-
tions in dimensionless form read
ov

ot
þ vrv ¼ �rp þ Re�1r2v; ð1Þ

r � v ¼ 0; ð2Þ
where v and p are the velocity vector and the pressure field, respectively. The Reynolds number Re ¼ UL=m is
defined depending on the specific problem under consideration; m is the kinematic viscosity of the fluid, L and
U are a length and a velocity scale, respectively. Three-dimensional problems are assumed to be periodic in the
x and y directions of a Cartesian system of coordinates. Along these, Fourier expansions are used to describe
the flow variables. Two-dimensional flows are periodic in the x direction.

The system (1-2) is solved numerically with a fractional step method. A spectral representation of the vari-
ables is used along the periodic directions; second-order centered finite-differences are employed for the spatial
discretization along z. In case of two-dimensional problems, the results reported below have been obtained
with an analogous version of the numerical code entirely based on finite differences, giving undistinguishable
results. Eq. (1) is advanced in time using a third-order low-storage Runge–Kutta scheme, giving the interme-
diate non-solenoidal field v�; apart from the coefficients that must be used to advance the single sub-time step,
omitted for brevity, the procedure can be synthesized as
v� � vn

Dt
¼ �GðpnÞ �HðvnÞ þ Re�1N ðvnÞ; ð3Þ
where the superscript indicates the instant of integration, Dt is the time step, G and N are the discrete gradient
and Laplacian operators, respectively, H represents the non-linear term. The mass conservation (2) is imposed
solving the Poisson-type problem (4) for the field /, which is used to update the pressure and to correct the
velocity field with the irrotational contribute Gð/Þ [8]:
Dðv�Þ ¼ DGð/nþ1Þ; ð4Þ
pnþ1 ¼ pn þ /nþ1=Dt þ OðDt2Þ; ð5Þ
vnþ1 ¼ v� � Gð/nþ1Þ; ð6Þ
where D is the discrete divergence operator. The two-dimensional results reported below have been obtained
with the explicit treatment of N ðvnÞ in (3); same cases have been recalculated with an implicit method, showing
identical results. The time step Dt has been always selected in order to satisfy the viscous and convective sta-
bility conditions.

3. Results

3.1. Test #1

Consider the two-dimensional problem in Fig. 1a. The flow is forced by a uniform velocity profile
vzðx; 1Þ ¼ �1. The Reynolds number is Re ¼ U 0L=m, L is the dimensional width of the domain, U 0 the dimen-
sional reference velocity. The solid fixed body is a square of side d ¼ 1=2, placed symmetrically inside the
domain.

The inlet profile is imposed to the intermediate field v�. The body surface corresponds to coordinate lines,
where the normal component of the velocity (impenetrability) is imposed directly without any interpolation,
e.g. point A in Fig. 1b for v�z . The tangential velocity at the points closest to the wall comes from the linear
interpolation in the normal direction: v�z ðZ1Þ ¼ v�z ðZ2Þ=3, Fig. 1c. A zero value of the velocity is imposed at
the grid points inside the body. When (4) is solved, a homogeneous Neumann’s condition is used at z ¼ 1,
so that the vertical component of Gð/Þ does not modify the inlet profile. The Dirichlet’s condition / ¼ 0 is
imposed at z ¼ 0. The same conditions hold for the pressure p. Following the direct forcing approach [9],
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Fig. 1. (a) Sketch of the two-dimensional problem. (b and c) Computational grid close to the walls. Grid points for vz (d), for vx (j), for
the pressure (�).
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any condition is imposed at the body surface neither when GðpÞ is computed in (3) nor when the Poisson prob-
lem (4) is solved. The reference run was performed with Re ¼ 500, time step Dt ¼ 1=512, and a grid
Nx ¼ Nz ¼ 128; then, the parameters have been varied as reported in Table 1. Two different initial conditions
have been used: in the runs from #1 to #8 the flow starts from the rest, in the other cases the irrotational solu-
tion, satisfying the correct boundary conditions at the wall, has been used. This has been obtained with a mod-
ified version of the numerical code. A zero value is assigned to the component of Gð/Þ normal to the walls
when the velocity field is updated (6), the same condition is imposed explicitly in the Poisson solver (4), sim-
ilarly to the method proposed in [11]. This code has been also used to perform a complete simulation; let us
assume this solution, run #0, as”exact”.

The comparison between the vorticity obtained with the direct forcing method and that of the exact solu-
tion, run #0, is reported in Fig. 2; the numerical parameters are those of run #1 in Table 1. The small differ-
ences between the vorticity distributions are due to the incorrect behavior of the solution at the upper side of
the body, where the direct forcing method allows a flux through the wall. This leads to a reduction of the lat-
eral flows, of the order of 5% in this case, which is sufficient to slightly modify the boundary-layer profile, and
therefore the vorticity distribution. Grid refinements do not modify substantially the picture, only giving a
smoother description of the flow field.
Table 1
Test #1: parameters of the runs. Initial condition: runs from #1 to #8, the flow starts from the rest; runs from #9 to #13, irrotational
solution

# Re Dt Nx Nz

1 500 1/512 128 128
2 1000 1/512 128 128
3 250 1/512 128 128
4 500 1/1024 128 128
5 500 1/2048 128 128
6 500 1/512 256 128
7 500 1/1024 256 128
8 500 1/512 128 256
9 500 1/512 128 48

10 500 1/512 128 64
11 500 1/512 128 128
12 500 1/512 128 256
13 500 1/1024 128 512
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Fig. 2. Vorticity fields at t ¼ 4=64. Run #1 in Table 1, direct forcing method (a); same numerical parameters, impenetrability condition
imposed directly (b). Contour levels from �200 to �10, step 10.

6376 F. Domenichini / Journal of Computational Physics 227 (2008) 6372–6384
In order to analyze the solution at and close to the walls, let us first discuss the behavior of the tangential
velocity, point B in Fig. 1c. The temporal evolution of the linear extrapolation of the velocities at the points Z1

and Z2 in Fig. 1c, that would match the desired boundary condition vzðBÞ ¼ 0, is reported in Fig. 3. The initial
evolution, t < 0:2, shows that the velocity rapidly decreases from its unitary value to ones that are four orders
of magnitude smaller. Afterwards, the velocity changes sign and for t > 1 approaches an asymptotic value.
Variations of the Reynolds number do not affect sensibly the solution until the thickness of the boundary-layer
becomes relevant and influences a larger part of the flow domain, Fig. 3a. Smaller time steps give an initial
more rapid decreasing of the velocity toward the zero value and lower asymptotic values, while a finer grid
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Fig. 3. Modulus of the tangential velocity at point B. (a) Continuous, dotted, dashed lines: runs #1, #2, #3 in Table 1, respectively. (b)
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along the x-direction has a negligible influence, Fig. 3b. Moreover, in Fig. 3c it is shown that a different initial
condition and grid refinements along the z-direction do not modify substantially the solution.

An analogous behavior has been observed for the normal component of the velocity at the wall, which is
analyzed in Fig. 4 referring to the point A in Fig. 1b. The solutions rapidly converge to asymptotic values that
differ from the boundary (zero) condition imposed during the step (3). The convergence is rapid but not
instantaneous, and it is almost independent on the viscous diffusion that takes place in the boundary-layer,
see Fig. 4a where the results obtained with different Reynolds numbers are compared with that found solving
with the same numerical code the inviscid version of the problem. In this case, given the steadiness of the forc-
ing, the correct irrotational solution could be instantaneous, as that used as initial condition for the runs from
#9 to #13. Then, the steps of the numerical integration necessary to reach the final state can be regarded as
subsequent iterations. The solution is weakly influenced by grid refinements, compare runs #1, #6, and #8 in
Fig. 4b and those in Fig. 4c, obtained with a different initial condition. A more evident dependence on the time
step can be observed in Fig. 4b: the value of the solution and the interval of time for the rapid convergence are
related almost inversely to Dt.

Results in Figs. 3 and 4 show that the direct forcing approach coupled with the fractional step method does
not guarantee the satisfaction of the boundary conditions and that the error of the tangential velocity is
approximately one order of magnitude smaller than that of the normal velocity. From a theoretical point
of view, the field /, steps (4) and (6), must be forced to ensure the impenetrability of the walls. On the oppo-
site, any condition is imposed using the direct forcing method, where (4) is solved straightforwardly and the
normal component of r/ in (6) is computed accordingly. It must be noted that step (4) does not differ from its
standard numerical implementation, where any condition is imposed in the tangential direction, following cor-
rectly the mathematical nature of the problem. At point B, the Navier–Stokes equation (1) reads
op=oz ¼ Re�1o2vz=ox2, the balance between the tangential pressure gradient and the normal variation of the
shear stress. This holds exactly at the wall and approximately inside the boundary layer, where the convective
term is typically small but not zero. In general, the viscous term is different from zero, thus op=oz 6¼ 0. A zero
tangential pressure gradient is in fact related to very particular cases, e.g. the Stokes’s flows generated by the
motion of a flat plate [12]. It can not be expected in more complex problems, such as flows over curved sur-
faces, as erroneously reported in [9]. Note that the condition op=oz 6¼ 0 holds for inviscid flows also, where
pressure gradient is necessary to support the tangential convection. Given the relationship (5) between /
and p; o/=oz 6¼ 0 is a natural condition for the irrotational correction. From a numerical point of view, as
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it is standard when staggered grids are used, this contribute is computed at points inside the fluid domain,
therefore the no-slip condition is not violated. Thus it can be argued that the error in the solution may be
due to the inconsistency between the numerical approach and the physical constraint in the normal component
of the velocity. In fact, results in Figs. 3 and 4 show that the error is almost independent on the grid resolution,
while the numerical scheme has a global second-order accuracy in the space. It this therefore evident that the
error at the wall comes from a conceptual inconsistency. On the opposite, it must be remarked the dependence
of the solution on the time step of integration. Initially, the solution is almost irrotational, that is the sum of
the fields /, or Gð/Þ, computed at each time step. Having in mind the inviscid case reported in Fig. 4a it
appears that the numerical integration needs some iterations to converge to the final value. Using a smaller
Dt, the same iterations (the same number of irrotational fields) correspond to an interval of time proportion-
ally smaller, as can be depicted in Fig. 4b, compare runs #1, #4, #5. Since different time steps slightly modify
the evolution, the solutions show some little differences. Halving Dt, the convergence is accelerated by a factor
that is a little greater than two.

This outcome becomes clearer if the algorithm is modified as follows: at the end of each time step, the
boundary conditions are imposed, and steps (4)–(6) are repeated iteratively. The results of this numerical
experiment are reported in Fig. 5 for different numbers of iterations. Additional irrotational fields give a more
rapid convergence of the solution to the correct zero value, as suggested in [9]. Consider the computational cell
close to the point A in Fig. 1b. The flow starts from the rest, then after the first step of the temporal advance-
ment (3) vzðAÞ ¼ 0 (suppose for the sake of simplicity to force the mass conservation only at the end of the step
(3) and not during the sub-steps of integration); only the points close to the inlet section are influenced by the
advancement (3) because of the imposition of the inlet condition, while in the remaining part of the flow
domain the velocity is zero. Thus, the divergence field is zero everywhere, with the exception of the computa-
tional cells at the inlet. Since any condition is imposed at the walls solving the Poisson problem, the solution
after (4)–(6), satisfying the mass conservation, is the solenoidal uniform vertical flow vx ¼ 0 and vz ¼ �1,
which does not satisfy the impenetrability condition, being vzðAÞ ¼ �o/=ozjA ¼ �1. If the boundary condition
is imposed again, that is setting vzðAÞ ¼ 0, the first (standard) irrotational contribution is eliminated giving a
field that satisfies the boundary condition, but adding a divergence at point P ;DðPÞ ¼ �o/=ozjA=Dz ¼ �1=Dz.
In other words, the flux through the surface at A, satisfying the mass conservation but violating the boundary
condition, is replaced by a source in P. This procedure does not modify neither the velocity nor the divergence
at the fluid points far from the boundaries. At the solid points, the velocity is modified being forced to be zero,
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while the divergence in the corresponding cells maintains the null value. Solving again (4) the divergence DðP Þ,
as well as that in the other cells close to the body, is newly eliminated. The new (second) irrotational field
removes DðP Þ with different fluxes across the four sides of the cell. These are vertical (normal to the wall)
at points A and M, and tangential at X 1 and X 2. The first flux through the boundary given by the first solution
of (4) is therefore divided in four smaller fluxes. The velocity at point A is lowered of some percentages at each
iteration, reducing the violation of the boundary condition.

To fix ideas, call c0 ¼ vzðAÞ ¼ �1 the velocity at the end of the numerical integration (3)–(6), the subscript
now represents the iteration. After the first iteration, the normal velocity at A can be written c1 ¼ ac0; a < 1 is
the percentage of c0 (of DðP Þ) adsorbed by the lower side of the cell. If a was a constant, after the nth iteration
we could write cn ¼ anc0, that is the knowledge of a would give an estimate of the celerity of the convergence.
The distribution of c in correspondence of the upper border of the body are reported in Fig. 6a for some iter-
ations computed after the first step of the integration (3)–(6), the numerical parameters are those of run #1.
The velocity modulus decreases more rapidly in the middle of the border, with a slower convergence at the
edges where higher values of a are found, Fig. 6b. This depends on the local stronger forcing due to the pres-
ence of the lateral walls, where the impenetrability is violated in the x-direction also. Smaller corrections are
found at points inside the fluid domain (x < 0:25 and x > 0:75), where the divergence is not forced during the
iterations. Notwithstanding the variability of a, a rough estimate of the rate of convergence of the process can
be obtained with a single iteration.

3.2. Test #2

The same problem of Test #1 has been solved with a different treatment of the body. The points inside the
body have been left free to develop a flow: the solid is a rigid square having sides of zero-thickness. Several
runs have been made, see Table 2, with a Reynolds number Re ¼ 500.

The evolution of the velocity at point A is reported in Fig. 7a. The previous findings are confirmed: smaller
time steps improve the solution, and additional corrections help in reducing the violation of the boundary con-
dition. It appears that when thin walls are considered, strictly speaking of zero thickness, the satisfaction of the
boundary condition becomes a more crucial issue. The straightforward solution of (4) does not prove to be
sufficiently accurate, compare the top line in Fig. 7a with the thick one, obtained in Test #1 with the same
numerical parameters. With this treatment of the body, the impenetrability of the walls is violated more than
before, being the normal velocity one order of magnitude higher than that found in Test #1. The flux across
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Table 2
Test #2: parameters of the runs

# Dt Nx Nz N

1 1/512 128 128 0
2 1/1024 128 128 0
3 1/2048 128 128 0
4 1/512 128 128 1
5 1/512 128 128 2
6 1/512 128 128 4

N is the number of additional irrotational iterations.
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the upper wall is not negligible, and the lateral flows are consequently reduced for the continuity constraint.
The less intense tangential forcing at the lateral walls gives the vorticity field in Fig. 7b, which is substantially
different from those in Fig. 2.

3.3. Test #3

The same geometrical problem, with the treatment of the body used in Test #1, has been studied with the
unsteady forcing vzðx; 1Þ ¼ � sinð2pt=T Þ; T has been varied from 1/4 to 2. The velocity at the point A is
reported in Fig. 8. When the unsteadiness of the forcing increases, the physical time scale of the problem T
approaches the time interval necessary to the numerical convergence of the algorithm detected in the steady
Test #1. Increasingly worse solutions are found. The iterative procedure has been applied to the case T ¼ 1,
improving the solution similarly to what obtained in the steady case.

3.4. Test #4

In this section we analyze the three-dimensional flow inside a prolate spheroid cavity with moving walls
[13,14]. The problem is solved using the direct forcing approach in a bi-periodic box. The boundary conditions
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are imposed directly at the points closest to the immersed wall, which is therefore described in a stepwise way.
Since staggered variables are used, the theoretically thin surface is somehow diffused inside the fluid domain.
The mathematical definition of the problem can be found in Domenichini et al. [13]. The Reynolds number in
(1) is here replaced by a Stokes parameter b ¼ D2=mT ¼ 225, being D a reference value of the equatorial diam-
eter and T the period of the forcing motion [14]. The dimensions of the numerical box are 1:5� 1:5� 1:6; it
has been verified, the results are not reported here, that the solution is substantially not affected by the dimen-
sions of the computational box. Along the periodic directions, Nx and Ny harmonics are used, Nz are the grid
points in the z-direction. The same problem has been studied solving the Navier–Stokes equations in the body-
fitted system of coordinates with the same standard fractional step method. Details can be found in [13]. In the
present case, a grid 64� 128 for the meridian plane and 16 harmonics in the azimuthal direction have been
used. At the inlet section, z ¼ 1:6, the entering velocity profile assigned during the advancement (3) and the
conditions imposed solving (4) are the same for the two different codes.
Table 3
Test #4: parameters of the runs. N is the number of additional irrotational corrections

# Nx Ny Nz N Dt

1 128 128 128 0 1/512
2 128 128 256 0 1/512
3 256 256 128 0 1/512
4 128 128 128 1 1/512
5 128 128 128 2 1/512
6 128 128 128 4 1/512
7 128 128 128 8 1/512
8 128 128 128 0 1/1024
9 128 128 128 0 1/2048

10a 128 128 128 0 1/512
11a 128 128 128 2 1/512
12a 128 128 128 8 1/512

a Runs #10–12 have been performed with a thick wall, as described in the text.
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The y-component of the vorticity for some runs in Table 3 at t ¼ 24=64 and y ¼ 0:75 (vertical mid-plane)
are compared in Fig. 9 with the results obtained with the code written in the body-fitted system of coordinates.
The jet that enters the expanding cavity has a blunt profile [11], which allows the development of a three-
dimensional ring-shaped vortex, whose vertical section is represented by the two counter-rotating vortices
in Fig. 9a. The right vortex moves tangentially to the wall, while the left one penetrates transversally occupy-
ing the central part of the cavity [13,14]. When the problem is solved with the direct forcing method, the
boundary condition at the wall is violated. The different underlying irrotational flow modifies the motion
of the vortex structure: the right part does not develop close to the wall, but penetrates more deeply the cavity,
the horizontal displacement of the left one is reduced, Fig. 9b. Finer grids, not shown, do not modify the
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Fig. 9. Test #4. Instantaneous vorticity fields, y-component, at y ¼ 0:75; t ¼ 24=64. Contour levels from �105 to 105 and step 10; positive
levels: black lines. (a) Body-fitted system of coordinates; (b–f) runs #[1,9,7,10,12] in Table 3, respectively.
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results. Previous findings are confirmed: smaller Dt and the iterative procedure drive the flow to the correct
solution, Figs. 9c and 9d, respectively. Following the comparison between the results of Test #1 and Test
#2, the problem has been solved assuming a thicker wall, Fig. 9e; in this case the wall thickness is four times
the step size in the z-direction. This strategy has been coupled with the iterative procedure, Fig. 9f. The field is
very similar to that in Fig. 9d, suggesting that the iterations have an impact on the solution more relevant than
the treatment of the body.

4. Discussion

In the present work the consistency of the direct forcing approach [9] has been analyzed when a fractional
step method is used to solve the Navier–Stokes equation. Simple two-dimensional problems have been defined,
avoiding as much as possible interpolating techniques that may affect the discussion.

The central issue of this work is the behavior of the velocity normal to the boundaries when (4) is solved
straightforwardly. Such an approach does not have any theoretical support, and numerical arguments do not
give satisfactory explanations about its correctness, when it is used in conjunction with a fractional step
method [9]. To overcome this problem, different methods have been developed [10,11] that can not be imple-
mented when spectral methods are used, as in the present case.

If any additional condition is imposed during the solution of (4) and the computation of (6), the resulting
velocity field violates the impenetrability of the walls, as expected from the mathematical nature of the prob-
lem. It has been verified that, also in the reference run of the steady Test #1 performed with the coarsest grid,
the relative modification induced by the normal correction, say ðv� � vÞ=v� ¼ Gð/Þ=ðvþ Gð/ÞÞ, becomes neg-
ligible small after few initial steps [9]. However, this is not sufficient to ensure the satisfaction of the boundary
condition. The solution reaches an almost steady state, see Figs. 3 and 4: at each time step the momentum
equation (3) and the mass conservation (4)–(6) add and subtract alternatively an almost steady error.
Improvements was obtained lowering the Dt, in any case well below the values that guarantee the stability
of the solution. An alternative procedure is represented by the iterations of the irrotational correction. The
meaning of this procedure related to the numerical diffusion of the divergence has been discussed, and an
approximate criterion to estimate the number of iterations necessary to lower the errors has been suggested.

Regarding the tangential velocity, it has been shown that the modifications of the velocity field close to rigid
walls, due to the violation of their impenetrability, affect the satisfaction of the adherence condition also.

It can be said that the direct forcing approach gives satisfactory results when a qualitative description or the
gross features of the solution are required. Additional care in the treatment of the boundaries is necessary
when the details of the flow close to walls are a relevant subject of the problem. This appears further important
in case of thin boundaries especially when the velocities at both sides of the surface are in the same direction,
as detected in the Test #2. An additional source of inconsistency is represented by the unsteadiness of the
problem, which can be given by the external forcing, Test #3, by the motion of the boundary, Test #4, or
by the internal evolution of the flow.

The proposed method has been applied to two-dimensional problems with sharp-edged solid bodies and to
a three-dimensional one with a moving smooth surface. It has been verified that the presence of corners is a
very sensitive issue. Thus, further studies are needed to validate the procedure in case of three-dimensional
bodies with steep curvature. Moreover, in case of accelerating bodies, when a pressure gradient in the direction
normal to the surface is expected to develop naturally, it must be verified the convergence of the method and
the absence of numerical instability close to the immersed surfaces.

A final remark must be added about the interpolations, that in the present work have been reduced as much
as possible. Several schemes have been suggested employing linear and/or quadratic interpolations of the fluid
variables [1]. In case of a fixed two-dimensional wall, if n and s are the normal and tangential coordinates,
respectively, at n ¼ 0 the boundary conditions are un ¼ us ¼ 0, so that oun=os ¼ ous=os ¼ 0. Moreover, mass
conservation gives oun=on ¼ 0, while in general ous=on 6¼ 0. Thus, at the lower order of approximation we
have us ¼ C1nþ C2n2 þ Oðn3Þ and un ¼ C3n2 þ Oðn3Þ as n! 0. The normal velocity is an infinitesimal of
higher order, therefore different interpolations must be used to take into account this point. Analogous con-
siderations hold for the irrotational part of the solution /. In this case, the constraints give
/ ¼ Aþ Bn2=2þ Cn3=3þ Oðn4Þ. Then, if needed, the normal and tangential components of r/ must be
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computed with different interpolations, un ¼ Bnþ Cn2 þ Oðn3Þ and us ¼ oA=osjn¼0 þ oB=osjn¼0n2=2þ Oðn3Þ, in
order to satisfy the impenetrability condition and the irrotationality of the r/ field.
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